Carnot cycle

A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through the application of work to the system. In a Carnot cycle, a system or engine transfers energy in the form of heat between two thermal reservoirs at temperatures T H {\displaystyle T_{H}} and T C {\displaystyle T_{C}} (referred to as the hot and cold reservoirs, respectively), and a part of this transferred energy is converted to the work done by the system. The cycle is reversible, and entropy is conserved, merely transferred between the thermal reservoirs and the system without gain or loss. When work is applied to the system, heat moves from the cold to hot reservoir (heat pump or refrigeration). When heat moves from the hot to the cold reservoir, the system applies work to the environment. The work W {\displaystyle W} done by the system or engine to the environment per Carnot cycle depends on the temperatures of the thermal reservoirs and the entropy transferred from the hot reservoir to the system Δ S {\displaystyle \Delta S} per cycle such as W = ( T H − T C ) Δ S = ( T H − T C ) Q H T H {\displaystyle W=(T_{H}-T_{C})\Delta S=(T_{H}-T_{C}){\frac {Q_{H}}{T_{H}}}} , where Q H {\displaystyle Q_{H}} is heat transferred from the hot reservoir to the system per cycle.


Developed by StudentB